Single Image Dehazing via Multi-scale Convolutional Neural Networks

نویسندگان

  • Wenqi Ren
  • Si Liu
  • Hua Zhang
  • Jin-shan Pan
  • Xiaochun Cao
  • Ming-Hsuan Yang
چکیده

The performance of existing image dehazing methods is limited by hand-designed features, such as the dark channel, color disparity and maximum contrast, with complex fusion schemes. In this paper, we propose a multi-scale deep neural network for single-image dehazing by learning the mapping between hazy images and their corresponding transmission maps. The proposed algorithm consists of a coarse-scale net which predicts a holistic transmission map based on the entire image, and a fine-scale net which refines results locally. To train the multi-scale deep network, we synthesize a dataset comprised of hazy images and corresponding transmission maps based on the NYU Depth dataset. Extensive experiments demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods on both synthetic and real-world images in terms of quality and speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single Image Dehazing via Multi-Scale Convolutional Neural Networks Supplementary Material

Effectiveness of Fine-scale Network: As stated in the manuscript, the finescale network is able to refine the holistic prediction generated by the coarse-scale network. In this supplemental material, we conduct more experiments to show the dehazing results without using fine-scale or coarse-scale networks in Figure 1. We note the architectures of these two networks are similar except input and ...

متن کامل

A Cascaded Convolutional Neural Network for Single Image Dehazing

Images captured under outdoor scenes usually suffer from low contrast and limited visibility due to suspended atmospheric particles, which directly affects the quality of photos. Despite numerous image dehazing methods have been proposed, effective hazy image restoration remains a challenging problem. Existing learning-based methods usually predict the medium transmission by Convolutional Neura...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Multi-Neighborhood Convolutional Networks

We explore the role of scale for improved feature learning in convolutional networks. We propose multi-neighborhood convolutional networks, designed to learn image features at different levels of detail. Utilizing nonlinear scale-space models, the proposed multineighborhood model can effectively capture fine-scale image characteristics (i.e., appearance) using a small-size neighborhood, while c...

متن کامل

C2MSNet: A Novel approach for single image haze removal

Degradation of image quality due to the presence of haze is a very common phenomenon. Existing DehazeNet [3], MSCNN [11] tackled the drawbacks of hand crafted haze relevant features. However, these methods have the problem of color distortion in gloomy (poor illumination) environment. In this paper, a cardinal (red, green and blue) color fusion network for single image haze removal is proposed....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016